여지껏 푼 bfs 문제중에 제일 어려웠던것 같다...
맨 처음 틀린 접근 방법: 문의 개수를 카운트 하고 dfs에서 문의 개수에 도달하면 하는 방법으로 했었는데
맵이 100,100 으로 커지면 정말 말도 안되는 연산시간을 요구하기 때문에 하면 안됨으로 실패했다
dfs할 땐 문이 8개면
if(level == 8) return 하는 식으로 접근 했었고
map[x][y]='.' (문에서 빈칸으로 바꿔줌)
dfs(level+1)
map[x][y] = '#'
dfs(level+1) // 문을 안바꿔줌
이런식으로 했었는데 틀린 접근이였다
결국 어떻게 풀어야 할 지 몰라서 다른 블로그를 참고했는데 정말 어려웠다
나는 이런식의 문제는 맵을 바꾸는 방법(문을 빈칸으로 바꾸고 안되면 빈칸으로 바꾼걸 다시 문으로 바꿈 ) 으로만 접근했었는데 그런 방법으로 접근하지 않는 방법을 이 문제를 통해 배운 것 같아 좋은 문제라고 생각한다.
이 문제는 문이 있으면 이동거리에 +1 을 하고 문이 아니면 그 전 단계의 값을 그대로 받는 것 이다
다른 블로그를 통해 보니 이 문제의 접근방법은
1. 외부자(상근)이가 죄수 1 죄수 2를 꺼내는 방법
2. 죄수1이 죄수2와 만나 나가는 방법
3. 죄수2가 죄수1을 만나 나가는 방법인데
각각의 거리를 구한 다음에 다 더한 후 최소값을 구하는 건데 자세한건 코드를 보며 설명하겠다.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
boolean flag = false; //죄수가 두명이 있는데 둘다 각각의 큐에 넣어주기 위해 flag를 둠
for(int i=0; i<h+2; i++) {
for(int j=0; j<w+2; j++) {
map[i][j]='.';
}
}
for(int i=1; i<=h;i ++) {
String str = br.readLine();
for(int j=1; j<=w; j++) {
map[i][j] = str.charAt(j-1);
if(!flag && map[i][j] == '$') { // 첫번째 덱에넣어줌
person1.add(new Node(i,j));
flag = true; // 이것을 통해 첫째죄수와 둘째죄수를 구분해 큐에 넣을수 있다.
}
else if(flag && map[i][j] == '$') {
person2.add(new Node(i,j)); // 두번째 덱에 넣어줌
}
}
}
http://colorscripter.com/info#e" target="_blank" style="color:#4f4f4ftext-decoration:none">Colored by Color Scripter
|
>cs |
다른 여러가지 방법이 있겠지만 일단 맵을 2칸 더 크게 받아야 한다.
그 이유는 위에서 말했던 3가지 조건중 1번째 조건 외부자가 죄수1과 2를 꺼내는 경우 인데
문제 조건 중 상근이는 감옥 밖을 자유롭게 이동할 수 있고,
이 말이 무엇을 의미하냐는 것은 감옥의 위 , 아래, 왼쪽 , 오른쪽 어디서든 접근이 가능하다는 것이다
밑의 사진을 보자.
만약 기존의 맵이 3x3인 경우 상근이가 감옥의 위,아래,오른쪽,왼쪽 어디서든 접근 하기 위해선
세번째 그림인 5x5 맵이 되어야 한다 .
맵의 크기가 n일경우 [n+1][n+1] 만 하면 되는거 아닌가? 라고 생각 할 수도 있는데 그렇게 하면
두번째 그림처럼 된다.
여기서 맵을 확장 할 수 있는 이유는 우리는 위에서도 언급말한 것 처럼 '벽' 일 경우에만 이동거리 +1 을 해 줄 것이다.
즉 새로 추가한 부분은 이 문제 기준으로 '.' 으로 초기화를 하여 이동거리에는 아무런 영향을 미치지 않는다
나도 왜 맵을 확장하는지 이해하기가 너무 힘들었는데 출구가 어디서든 있을 수 있으니 기존의 맵에서 상하좌우 어느 방향으로던 검사를 해야한다고 생각했다.
이 문제에서는 덱을 이용했는데 이는 코드를 보며 이해 해보도록 하겠다.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
|
public static int [][] bfs(Deque<Node> q) {
int dist[][] = new int[h+2][w+2];
visited = new boolean[h+2][w+2];
while(!q.isEmpty()) {
Node o = q.remove();
visited[o.x][o.y]= true;
for(int i=0; i<4; i++) {
int nx = o.x+dx[i];
int ny = o.y+dy[i];
if(nx>=0 && nx<h+2 && ny>=0 && ny<w+2) {
if(map[nx][ny]=='*') {
continue;
}
if(!visited[nx][ny]) {
if(map[nx][ny]=='#') { // 문 이라면 1 추가
dist[nx][ny]=dist[o.x][o.y]+1;
visited[nx][ny] = true;
q.addLast(new Node(nx,ny));
}
else { //문이 아니면 기존의 값을 가지고 간다
visited[nx][ny]= true;
dist[nx][ny] = dist[o.x][o.y];
q.addFirst(new Node(nx,ny));
}
}
}
}
}
return dist;
}
http://colorscripter.com/info#e" target="_blank" style="color:#4f4f4ftext-decoration:none">Colored by Color Scripter
|
bfs 함수는 이렇게 생겼다
11-13번째 줄은 '*'이면 지나 갈 수 없는 부분이니 고려를 해주지 않았다.
그후 기존 bfs와 좀 다른게 15-24번째줄 라인인데
덱을 사용했다
문을 지나 갈 경우 덱의 뒤쪽에 넣어줬다
이유는 최단거리를 구해야하기 때문이다
이 조건에서 한 번 방문한 visited[nx][ny]는 또 방문하지 않음으로
예를들어 거리가 0 인 좌표가 상하좌우를 통해 nx,ny를 가는경우와
기존 거리가 1인 좌표가 상하좌우를 통해 nx,ny를 가는 경우가 있기 때문에
거리+1 을 하면 뒤쪽으로 넣어주어 최단 거리를 위한 거리가 0인 것을 큐에서 빼주면 된다.
그 후 각각의 케이스 (외부자, 죄수1, 죄수2) bfs를 해 이동 거리를 다 구한 다음에
한꺼번에 더해주고 최소값을 찾으면 된다 이 과정에서도 지나 갈 수 없는 '*' 은 스킵한다.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
public class Main {
static int t,h,w;
static int ans = Integer.MAX_VALUE;
static Character map[][];
static boolean visited[][];
static int dx[] = {0,0,1,-1};
static int dy[] = {1,-1,0,0};
static Deque<Node>s = new ArrayDeque<>(); // 상근이
static Deque<Node>person1 = new ArrayDeque<>(); // 죄수1
static Deque<Node>person2 = new ArrayDeque<>(); //죄수2
static int fin_dist[][];
public static void main(String[] args) throws IOException{
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
t = Integer.parseInt(br.readLine());
while(t-- >0) {
ans = Integer.MAX_VALUE;
s.clear();
String[] tt = br.readLine().split(" ");
h = Integer.parseInt(tt[0]);
w = Integer.parseInt(tt[1]);
map = new Character[h+2][w+2];
fin_dist = new int[h+2][w+2];
boolean flag = false; //죄수가 두명이 있는데 둘다 각각의 큐에 넣어주기 위해 flag를 둠
for(int i=0; i<h+2; i++) {
for(int j=0; j<w+2; j++) {
map[i][j]='.';
}
}
for(int i=1; i<=h;i ++) {
String str = br.readLine();
for(int j=1; j<=w; j++) {
map[i][j] = str.charAt(j-1);
if(!flag && map[i][j] == '$') { // 첫번째 큐에넣어줌
person1.add(new Node(i,j));
flag = true; // 이것을 통해 첫째죄수와 둘째죄수를 구분해 큐에 넣을수 있다.
}
else if(flag && map[i][j] == '$') {
person2.add(new Node(i,j)); // 두번째 큐에 넣어줌
}
}
}
s.add(new Node(0,0));
int temp[][] = bfs(s);
int temp1[][] = bfs(person1);
int temp2[][] = bfs(person2);
for(int i=0; i<h+2; i++) {
for(int j=0; j<w+2; j++) {
fin_dist[i][j] = temp[i][j]+temp1[i][j]+temp2[i][j];
}
}
for(int i=0; i<h+2; i++) {
for(int j=0; j<w+2; j++) {
if(map[i][j]=='*') {
continue; // 벽은 못가니 고려 x
}
if(map[i][j]=='#') {
fin_dist[i][j]-=2;
}
}
}
System.out.println(ans);
}
}
public static int [][] bfs(Deque<Node> q) {
int dist[][] = new int[h+2][w+2];
visited = new boolean[h+2][w+2];
while(!q.isEmpty()) {
Node o = q.remove();
visited[o.x][o.y]= true;
for(int i=0; i<4; i++) {
int nx = o.x+dx[i];
int ny = o.y+dy[i];
if(nx>=0 && nx<h+2 && ny>=0 && ny<w+2) {
if(map[nx][ny]=='*') {
continue;
}
if(!visited[nx][ny]) {
if(map[nx][ny]=='#') { // 문 이라면 1 추가
dist[nx][ny]=dist[o.x][o.y]+1;
visited[nx][ny] = true;
q.addLast(new Node(nx,ny));
}
else { //문이 아니면 기존의 값을 가지고 간다
visited[nx][ny]= true;
dist[nx][ny] = dist[o.x][o.y];
q.addFirst(new Node(nx,ny));
}
}
}
}
}
return dist;
}
}
class Node{
int x,y;
Node(int x, int y){
this.x=x;
this.y=y;
}
}
http://colorscripter.com/info#e" target="_blank" style="color:#4f4f4ftext-decoration:none">Colored by Color Scripter
|
cs |
'알고리즘' 카테고리의 다른 글
[백준 4991] 로봇청소기 -JAVA // le_effort// (0) | 2020.03.05 |
---|---|
[백준 9328] 열쇠 -JAVA //le_effort// (0) | 2020.03.04 |
[백준 2589] 보물섬 - JAVA // le_effort// (0) | 2020.03.04 |
[백준 12851] 숨바꼭질2 -JAVA // le_effort// (0) | 2020.03.03 |
[백준 2251] 물통 -JAVA // le_effort// (1) | 2020.03.03 |